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Abstract. The analytical approach to the critical point of Ising films proposed recently by Lin
et al is extended to investigate the interface effects on the critical temperatureTc for magnetic
bilayer heterostructures. We consider heterostructures composed of anm-monolayer film grown
on a substrate of ann-monolayer magnetic film with different lattice structures where 16 m and
n 6∞. The meanTc(m, n) of the bilayered heterostructure as a whole is obtained as a function
of the total thicknessN = m + n of the inhomogeneous system. A strong dependence of the
critical temperature upon the lattice structure is revealed. In particular, interface effects onTc for
systems consisting of an overlayer of a few spin monolayers on a thin film of magnetic substrates
with different lattice structure are investigated in detail and results for various combinations of
the lattice structure are discussed.

1. Introduction

The technology of molecular epitaxy has made it possible to study properties of materials
in reduced dimensionality that do not usually exist in the three-dimensional (3D) solids. A
great deal of work has been carried out on various kinds of crystalline solid in the form of
thin films, heterostructures and superlattices. In particular, a number of experiments on the
critical behaviour of magnetic thin films can be found in the literature of recent years [1–9].

Numerical calculation of the critical temperatureTc for a film of seven spin monolayers
was performed with the high-temperature-series-expansion-extrapolation (HTSEE) method
up to twelfth order [10]. More recently, an analytical method has been developed on the
basis of the variational cumulant expansion (VCE) to calculate the critical point of Ising
films to an arbitrary accuracy [11]. For the first timeTc(l) was calculated analytically as a
function of the film thickness wherel is the number of spin monolayers in the film. The
theory is based on the conjecture thatTc is determined by locating the bifurcation point
of the free energy, which is regarded as an analytic function of the temperature when the
variational parameter introduced into the VCE is set to yield the minimum free energy for
the system. From the recursion formula for cumulants, it can be shown thatTc is given
by the ratio of the second-order derivative of two successive cumulants to any order of
accuracy. As the cumulants are calculated analytically by a graph technique, we can derive
an analytical expression forTc. In this way, the critical temperature is obtained to the
fourth order for simple cubic (sc) and body-centred cubic (bcc) and to the third-order for
face-centred cubic (fcc) lattices [11, 12]. It is found that the strong dependence ofTc on
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the lattice structure is solely determined by the number of nearest neighbours (ns) of the
lattice point.Tc increases quickly with increasing coordination number. On the other hand,
the dimensionality cross-over region is rather narrow in all three cases. The film behaves
like a two-dimensional (2D) system forl < 3 and like a 3D bulk forl > 6.

When compared with experimental data measured for ultrathin Ni films along both the
crystal growing directions (001) and (111) [13], the predicted critical temperature appears
to increase too rapidly withl for l < 4. It has been shown, however, that excellent
agreement with experiments can be achieved by introducing variable exchange integrals
near the surfaces [14].

As it is likely that heterostructures consisting of magnetic films of various lattice
structures with well defined interfaces may be available for experiments, it should be very
interesting to investigate the interface effects on the critical temperature in such materials.
We extend, in this article, the method developed in [11] and [12] to treat the critical point
of magnetic bilayer heterostructures. Our purpose is to study the behaviour of the critical
temperatureTc(m, n) for a system consisting ofm spin monolayers over a magnetic substrate
of n monolayers with different lattice structure as a function ofn andm, both of which can
take any integer value.

The VCE theory for the critical point is reviewed in section 2, in which the difficulty of
higher-order calculations in the usual treatment is discussed. In section 3, we outline very
briefly the method of calculation with the emphasis on the procedures of graph counting for
various heterostructures. The results for various combinations of lattices are presented and
discussed in section 4.

2. Theory

An Ising spin system in the absence of an external field is characterized by the Hamiltonian

H = − 1

s2

∑
〈i,j〉

Jij s
z
i s
z
j . (1)

Throughout this article, we follow the same notation as that in [11] and [12] unless otherwise
specified. In terms of the dimensionless quantitiesβij = jij /kBT and ti = szi /s, the action
S for the system is given by

S = X

kBT
= −

∑
〈i,j〉

βij ti tj (2a)

with the corresponding trial action for the noninteracting system

S0 =
∑
i

ξi ti . (2b)

Here,X = kBT S and we have introduced the variational parametersξi which serve as the
order parameters for our system as has been pointed out in [11].

The partition function of the system is

Z = e−W =
∑

eS =
∑

eS−S0 eS0 = Z0〈eS−S0〉0 (3a)

where we have defined the free energyW , and the Boltzmann ensemble average

〈. . .〉0 = 1

Z0

∑
ti

(. . .)exp(ξi, ti). (3b)

The partition function for a corresponding noninteracting system with free energyW0 is

Z0 = e−W0. (3c)
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Thus the free energy is given by

W = W0− ln〈eS−S0〉0 = W0− ln

[
1+

∞∑
n=1

1

n!
〈(S − S0)

n〉0
]

= W0+
∞∑
ν=1

(−1)ν

ν

[ ∞∑
n=1

1

n!
〈(S − S0)

n〉0
]ν

(4)

after the expansion of the exponential and logarithmic functions. In terms of the VCE, (4)
takes a much simpler form. Up to the orderm, we have

W ≈ W0−
m∑
n=1

1

n!
〈(S − S0)

n〉c = Weff,m (5)

where the cumulant average over the Boltzmann weight eS0 is defined by〈. . .〉c. The relation
between the two averages of a quantity can most easily be established by a comparison of
the corresponding terms in expansions of (4) and (5).

For simplicity, we consider a uniform spin-1
2 film with βij = β and ξi = ξ . The

formalism is, however, completely general and applies to Ising systems with different spin
values and spatially dependent quantitiesβij . The first-order free energy is then

(1/N)Weff,1 = − ln(2 coshξ)− (d/2)y2+ ξy (6a)

y = tanhξ (6b)

whered represents the dimensionality and2 = kBT /J = 1/β is the reduced temperature.
By minimizing the free energy, we find the condition

tanhξ = (2/2d)ξ (7)

which determines the variational parameter.
As has been discussed in [11], (7) has different solutions in different temperature ranges

for a given dimensionalityd, and the analytic behaviour of these solutions is illustrated in
figure 1. When2 > 2c, there is only one solutionξ0 = 0 corresponding to the minimum of
Weff,1. When2 < 2c, there are three solutionsξ0 andξ± corresponding to the maximum
and minima of the functionẆeff,1,, respectively. Thus, the critical value2c is determined
by the bifurcation point ofWeff,1(2, ξ) for ξ = 0. The parameterξ is zero in the high-
temperature region and becomes nonzero in the low-temperature region. Hence it has the
properties of the order parameter in Landau theory. On the basis of this analysis, a conjecture
was proposed [11] that, to any order of the VCE, the critical temperature is determined by
locating the bifurcation point of the free energyWeff,m,, namely, by the condition

(∂2/∂ξ2)Weff,m(2c, ξ)|ξ=0 = 0. (8)

An important remark is in order at this point. Without this conjecture one can only be
sure that, in the first-order approximation,ξ = 0 corresponds to a minimum of the function
Weff,1(2, ξ) for 2 > 2(1)

c . This presents a difficulty in higher-order calculations of the
internal energy and leads to the so-called ‘unwanted first-order phase transition’ [15, 16].
With the conjecture (8), it can be shown thatWeff,m(2, 0) remains analytic for2 < 2(m)

c

which is always lower than2(1)
c . The extremum condition like (7) for the first order can

be solved for every order. In fact we have approximately solved these equations up to
m = 8 for 2 not far below2(m)

c [17]. Once2 becomes less than2(m)
c , the minimum free

energy is characterized byξ (m)± . As long as the variational parameter is so chosen that the
free energy remains a minimum continuously across the critical point, there will not be any
discontinuity in the internal energy, and hence no first-order phase transition will appear.
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Figure 1. The analytic behaviour of the solutions to (7). The critical point is determined by the
bifurcation point2c.

3. Method of calculation

As has been shown in [11], one can prove by mathematical induction that (8) reduces to

[(∂2/∂ξ2)〈Sm−1〉c − (1/m)(∂2/∂ξ2)〈Sm〉c]ξ=0 = 0 m > 2 (9)

which yields immediately the critical temperature

kBT
(m)
c = (1/m)[(∂2/∂ξ2)〈Xm〉c/(∂2/∂ξ2)〈Xm+1〉c]ξ=0 m > 2. (10)

Note thatX = kBT S as defined in (2a) and the energy is in the unit of J. The cumulants
〈Sm〉c are calculated from the first-order moment

〈S〉0 = 1
2

∑
i,j

βij yiyj = 〈S〉c (11)

with the help of the recursion formula for moments

〈Sp+1〉0 =
(

1
2

∑
〈i,j〉

βij
∂2

∂ξi∂ξj
+
∑
〈i,j〉

βij yi
∂

∂ξj
+ 〈S〉c

)
〈Sp〉0 (12)

and relations between〈Sp〉c and 〈Sp〉0 whereβij measuresJij in the unit ofkBT andp is
an integer.

The procedure is standard but quickly becomes complicated asm increases. The amount
of work is, however, greatly reduced by a graph technique described in detail in [12]. It
is equivalent to the random walk calculation and the major part of the work involves the
counting of topologically equivalent graphs to be summed. For simplicity, we still assume
in what follows a uniform couplingβ throughout the heterostructure of different lattices,
although the method is completely general and applies to inhomogeneous lattices of various
geometry. Thus, (20)–(22) of [12] expressingTc in terms of the number of various graphs
remain valid.

We consider only cubic lattices in the present study. A heterostructure consists of a
magnetic substrate ofn monolayers, on top of which a magnetic film ofm monolayers
of different lattice is built. Thus the total number of spin monolayers in the structure is
N = n+m. It is important to note that eitherm or n can take any positive integer value,
and hence the bilayer system may be regarded as a 2D film with very few monolayers or
may actually be a 3D bulk structure depending on the thicknessN . It is also noted that
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Figure 2. A schematic illustration of bilayer heterostructures composed of (a) sc–fcc, (b) bcc–fcc
and (c) bcc–sc lattices.

every monolayer in the structure must contain exactly the same number of spins. For the
purpose of the counting of monolayers only, the top surface of the substrate is regarded as
the interface of the structure. Figure 2 illustrates the three cases for whichTc is calculated.

The number of graphs in which two nearest-neighbouring sites are connected by a bond
is represented by [l, l + µ], and these connected graphs are embedded on the sitel. Thus,
[l, l+µ] = 6 for bulk sc, 8 for bulk bcc and 12 for bulk fcc lattices. However, this number
changes for sites on either of the surfaces and on the interface of a heterostructure. On
the surface, [l, l + µ] becomes 5 for sc, 4 for bcc and 8 for fcc lattices. For sites on the
interface, we have [l, l+µ] = 9 for the sc–bcc structure. On the other hand, [l, l+µ] = 9
for lattice sites on the sc–fcc interface and 12 for sites on the bcc–fcc interface.

For graphs that involve two bonds, the number of connected graphs for sites on the
interface, and the surfaces as well as their immediate neighbouring monolayers are all
different and have to be counted separately. As graphs involving more and more bonds
must be counted in higher-order calculations, the procedure becomes tedious but remains
straightforward. According to the prescription outlined above, we find the number of
topologically equivalent graphs of different types needed for the three heterostructures of
(m+ n) monolayers as follows. For sc–bcc structures, we have up to fourth-order

[l] = m+ n m > 1, n > 2

[l, l + µ] = 6m+ 8n− 4 m > 1, n > 2

[l, l + µ, l + ν] = 36m+ 64n− 42 m > 1, n > 2

[l, l + µ, l + ν, l + η] = 216m+ 512n− 322 m > 1, n > 2

[l, l + µ+ ν, l + η] = 216m+ 512n− 400 m > 2, n > 3

[l, l + µ+ ν + η, l + δ] = 1296m+ 4096n− 3422 m > 3, n > 4

[l, l + µ+ ν + η = l + δ] = 90m+ 216n− 216 m > 2, n > 3. (13)

For sc–fcc structures, we have up to third-order

[l] = m+ n m > 1, n > 2

[l, l + µ] = 6m+ 12n− 8 m > 1, n > 2

[l, l + µ, l + ν] = 36m+ 144n− 154 m > 1, n > 2

[l, l + µ+ ν, l + η] = 216m+ 1728n− 2416 m > 3, n > 4

[l, l + µ+ ν = l + η] = 48n− 48 n > 2 (14)
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Figure 3. The reduced critical temperature plotted as a function of the monolayer numbersm

and n for heterostructures with ann-monolayer substrate andm monolayers added on its top
surface: (a)kBT

(3)
c /J for sc–fcc; (b)kBT

(3)
c /J for bcc–fcc; (c)kBT

(4)
c /J for sc–bcc.
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Figure 3. (Continued)

and for bcc–fcc structures, we find to third order

[l] = m+ n m > 1, n > 2

[l, l + µ] = 8m+ 12n− 8 m > 1, n > 2

[l, l + µ, l + ν] = 64m+ 144n− 128 m > 1, n > 2

[l, l + µ+ ν, l + η] = 512m+ 1728n− 1856 m > 3, n > 4

[l, l + µ+ ν = l + η] = 48n− 48 n > 2. (15)

4. Results and discussion

The graph counting is carried out up to the fourth order for sc and bcc lattices, but only to
the third order for structures involving the fcc lattice. This is because the bonds may form
closed loops in each of these cases. As has been pointed out in [12], the term corresponding
to a closed loop represents the contribution from the self-correlation of the initial spin atl,
and is expected to be much more important than other graphs of the same order. In other
words, the fourth-order correction improves the resultingTc more significantly than the
third-order correction in cases of sc and bcc lattices, while it is relatively small as compared
to the third-order correction in the case of the fcc lattice.

In order to distinguish the lattice structure, we always assume in our calculation of the
critical temperature that the substrate has at least three monolayers orn > 3, and that the
over-layer film has at least two monolayers, namely,m > 2. Thus, the critical temperature
Tc for sc–fcc structures calculated to the third-order is given by

kBT
(3)
c /J = (444m+ 4200n− 6196)/(90m+ 396n− 438) m > 2, n > 3. (16)
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(a)

(b)

Figure 4. The reduced critical temperature versus the thickness of (a) bcc–sc and (b) fcc–sc
heterostructures. The numeral besides a curve indicates the number of spin overlayers in the
structure.

For bcc–fcc structures, the values ofkBT (3)c /J are found for various cases and the results
are shown in table 1. The results appear more complicated for sc–bcc structures because
the fourth-order calculation involves more graphs. In table 2, we listkBT

(4)
c /J for various

combinations ofm andn in sc–bcc heterostructures.
In addition, we also present in figure 3 three-dimensional plots ofTc(m, n) for the

heterostructures illustrated in figure 2. For all three cases, it is seen that the critical
temperature increases with increasingn (the number of monolayers in the substrate) for
a fixedm (the number of monolayers of the overlayer film). On the other hand, it decreases
with increasingm for a given n. This is because we are considering only cases in which
the coordination number of the substrate is bigger than that of the overlayer film. As we
have noted earlier,Tc is higher for materials of larger coordination number.

That Tc actually decreases when overlayers are added to a substrate with a larger
coordination number may be demonstrated by a simple example. Consider a slab of fcc
substrate whoseTc (expressed inkBTc/J ) is around ten according to figure 5 of [12]. When
overlayers of sc lattice are added on top of it, the transition temperature of the resulting
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(a)

(b)

Figure 5. The same as in figure 4 except for (a) sc–fcc and (b) bcc–fcc heterostructures.

Table 1. The third-order critical temperaturekBT
(3)
c /J calculated for various combinations of

bcc–fcc structures.

n m > 3 m = 2

> 4 1168m+ 4200n− 4672
168m+ 396n− 384

4200n− 2336
396n− 12

3 1168m+ 7928
168m+ 804 9.0035

structure is expected to decrease. This is most easily seen if the overlayer is much thicker
than the substrate so that the structure is dominated by sc monolayers. The combined system
then behaves more like an sc lattice with aTc close to 4.5 according to figure 2 of [11].
This should not be taken as a contradiction to the well known fact that adding new bonds
increases the critical temperature [18], which is always true in homogeneous spin systems
without any interface effect involved.

To explore the interface influence onTc for systems with an overlayer of just a few
monolayers, we plot in figures 4–6 the critical temperature as a function of the thickness
N = m + n for various cases. We first consider heterostructures with sc substrates. The
reduced critical temperature is shown in figure 4 for (a) bcc overlayers and (b) fcc overlayers.
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Table 2. The fourth-order critical temperaturekBT
(4)
c /J calculated for various combinations of

sc–bcc structures.

n m > 5 m = 4 m = 3 m = 2

> 6 2118m+ 7832n− 6782
444m+ 1168n− 956

7832n+ 1690
1168n+ 820

7832n− 2588
1168n− 56

5 2118m+ 32378
444m+ 4884 6.1336 6.2310 6.2980

4 2118m+ 24546
444m+ 3716 6.0120 6.1212 6.2476

3 2118m+ 16330
444m+ 2548 5.7359 5.8464 5.9802

Table 3. The relative strength of the exchange integral in monolayers near film surfaces for
Ni(111) and Ni(001).

m = 1 m = 2 m = 3

a1 b1 a2 b2 a3 b3

fcc (111) 0.65 0.38 1.00 0.64 1.00 1.00
fcc (001) 0.17 0.14 0.66 0.45 1.00 0.76

Since both the bcc and fcc lattices have a larger coordination number than the substrate
lattice,Tc for the heterostructure is higher than that of the substrate in both cases. It increases
further as more monolayers are added. Because of the interface, in which every site has
nine nns, the increase inTc is enhanced and is particularly appreciable when the substrate
is thin. As the substrate becomes thicker, the increase becomes smaller and eventually
diminishes for largeN as expected.

The critical temperature of heterostructures with fcc substrates is shown in figure 5
for (a) sc and (b) bcc overlayers. Since the substrate, in the present case, has a larger
coordination number than either of the overlayer lattices,Tc for the heterostructure is in
general lower than the substrate. The more overlayers added to the top, the lower aTc results.
The interface effect, however, is relatively insignificant as compared to the previous cases
because the coordination number of the substrate is twelve in the present case. Again, the
change inTc vanishes in the limit of largeN as it should.

The interface effect is most remarkable in sc–bcc heterostructures with bcc substrates.
Figure 6 shows the critical temperature behaviour for such structures with (a) sc and (b)
fcc overlayers. It is observed that for fcc–bcc,Tc changes in a similar fashion as those in
figure 4 because the nn number for fcc is larger than that for bcc. In figure 6(a), however,
one sees that up to three sc monolayers added to a bcc substrate result in a higherTc than
that of the bcc substrate film. Only when four or more monolayers are added does the
resultingTc for the heterostructure become lower than that of the substrate. This unusual
phenomenon is actually due to the interface. We note that the number of ns for a site
in the sc–bcc interface is nine, which is larger than that for either of the component bulk
lattices. Hence our result simply indicates that more than three sc monolayers are needed to
compensate the effect of the interface before the critical temperature of the heterostructure
becomes lower than that of the substrate.

Finally, we emphasize that, in our treatment of magnetic systems of reduced
dimensionality on the Ising model, the only factor that results in the difference from the
bulk is the nn number which is different for sites on the surface, on the interface and in
the bulk. For a sc magnetic film of finite thickness, our results converge quickly to the
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(a)

(b)

Figure 6. The same as in figure 4 except for (a) sc–bcc and (b) fcc–bcc heterostructures.

numerical results from the twelfth-order HTSEE [10]. As a matter of fact, the exchange
coupling in a thin film may be very different from that in the bulk. It has been suggested
[19] and confirmed [20] that the surface layer of a ferromagnet follows a spin waveT 3/2

law, but with a surface Bloch parameterbs = αsbbulk enhanced by a factorαs = 2 if
the exchange remains homogeneous up to the surface. It has also been shown later that
a reduced exchange strength in the surface can cause a further enhancement, resulting in
αs > 2 [21]. Such enhancement of the surface spin wave parameter has been observed in
recent experiments [22, 23], indicating the reduced exchange coupling in the surface.

The present theory can easily be generalized to include the inhomogeneous coupling.
For example, the surface couplingJs may be different from the bulkJb, and the intraplane
J‖ may be different from the interplaneJ⊥. This will complicate the procedure of graph
counting considerably, but will not introduce any essential difficulty. We have found in our
second-order calculation that a slight anisotropy of the coupling strengthJ , say,J⊥ = 0.9J‖,
may reduceTc appreciably [24]. The contribution from the next-nearest-neighbour (nnn)
coupling to the critical behaviour has also been explored in [24]. Second-order results
indicate thatTc increases significantly even if one assumes that the nnn coupling is one
order of magnitude weaker than the nn coupling.
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Figure 7. A comparison between the theory and experiments: the critical temperature as
a function of the film thickness calculated with constant and variable coupling for fcc films
is compared with the data measured on ultrathin Ni films. The theoreticalTc for a constant-
coupling film with (111) and (001) surfaces is given by the dashed and dotted lines, respectively.
The solid and dash–dotted lines correspond to results for fcc (111) and (001) films with variable
exchange coupling specified in table 3.

To our knowledge, there is no experimental data in the literature for the critical
temperature of magnetic heterostructures. There does exist, however, a series of systematic
measurements ofTc as a function of thickness for ultrathin fcc Ni films in both (111) and
(001) directions [13]. Since the cubic symmetry is broken near the film surface, resulting
in uniaxial anisotropy, hence the system may be treated by the Ising model. Following
the procedure described in [12], we find that the data can be reproduced very well by
allowing variable coupling in only a couple of monolayers near the surfaces. We assume
that J‖ = αiJ and J⊥ = biJ , where i labels the monolayer withi = 1 at the surface.
It is assumed further that the parametersai < ai+1 < 1 and ai > bi . The results are
compared with data in figure 7 and the parameters that fit the data best are listed in table 3.
It turns out that the reduction of the surface coupling we find here is consistent with recent
measurements of the enhancement of the spin wave parameter [22, 23].

It may be of interest to mention that the method we have developed can also be applied
to calculate analytically the mean magnetization of magnetic films and heterostructures.
Work along this direction is being carried out and results will be reported elsewhere.
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